Machine Learning

Home  /  Ecommerce  /  Machine Learning

Machine Learning es una disciplina científica del ámbito de la Inteligencia Artificial que crea sistemas que aprenden automáticamente.

Machine learning (Aprender) en este contexto quiere decir identificar patrones complejos en millones de datos. La máquina que realmente aprende es un algoritmo que revisa los datos y es capaz de predecir comportamientos futuros. Automáticamente, también en este contexto, implica que estos sistemas se mejoran de forma autónoma con el tiempo, sin intervención humana. Veamos cómo funciona.

Big Data y Machine Learning aplicado a la empresa

Una empresa de telefonía quiere saber qué clientes están en “peligro” de darse de baja de sus servicios para hacer acciones comerciales que eviten que se vayan a la competencia. ¿Cómo puede hacerlo? La empresa tiene muchos datos de los clientes, muchísimos: antigüedad, planes contratados, consumo diario, llamadas mensuales al servicio de atención al cliente, últimos cambios de planes contratados… pero seguramente la usa solo para facturar y para hacer estadísticas. ¿Qué más puede hacer con esos datos? Se pueden usar para predecir cuándo un cliente se va a dar de baja y gestionar la mejor acción que lo evite. Es pocas palabras, con Machine Learning se puede pasar de ser reactivos a ser proactivos. Los datos históricos del conjunto de los clientes, debidamente organizados y tratados en bloque, generan una base de datos que se puede explotar para predecir futuros comportamientos, favorecer aquellos que mejoran los objetivos de negocio y evitar aquellos que son perjudiciales.

Esa cantidad ingente de datos son imposibles de analizar por una persona para sacar conclusiones y menos todavía para hacer predicciones. Los algoritmos en cambio sí pueden detectar patrones de comportamiento contando con las variables que le proporcionamos y descubrir cuáles son las que han llevado, en este caso, a darse de baja como cliente.

Analicemos un sencillo ejemplo de una predicción simplificada basada en datos de una compañía de telefonía ficticia:

Utilizando una herramienta de Machine Learning real:  podemos filtrar la información que tenemos y detallar a ciertos clientes que se han dado de baja. Ahora veamos su patrón como cliente:

Tiene más de 3 llamadas al servicio de atención al cliente.

  • Llama menos de 171,95 minutos al día.
  • Las llamadas en horario nocturno son inferiores a 189,02 minutos.

Este es un análisis de los datos históricos, pero… ¿dónde está la predicción? Vamos a ello: si los clientes que tienen estas características ya se han dado de baja de la compañía, es previsible que los que todavía son clientes y tienen este mismo comportamiento estén en riesgo de irse. Según este modelo predictivo, es bastante probable que esto suceda (se dice que la predicción tiene una confianza, en este caso, de 91,97%). Si el departamento de marketing tuviera esta información, podría proponerles proactivamente un cambio de plan de tarificación o podría revisar por qué han llamado al servicio de atención al cliente para intentar mantenerlos.

La cantidad de datos que se generan actualmente en las empresas se está incrementado de forma exponencial. Extraer información valiosa de ellos supone una ventaja competitiva que no se puede menospreciar.

El reto de sacar partido de los datos se ha simplificado enormemente. El Machine Learning de hoy no es como antes. Esto quiere decir que con datos de calidad, tecnologías adecuadas y análisis propicios es posible actualmente crear modelos de comportamiento para analizar datos de gran volumen y complejidad. Además, los sistemas proporcionan resultados rápidos y precisos sin intervención humana, incluso a gran escala. El resultado: predicciones de alto valor para tomar mejores decisiones y desarrollar mejores acciones de negocio.

Sin embargo, no debe distraer nuestra atención el volumen de datos. No es necesario tener tantos datos como Facebook o como un gran banco para hacer modelos que ayuden al negocio. Es mejor tener datos de calidad (fiables y útiles) que tener miles de millones de datos de los que no se puede extraer valor.

Empieza por algo sencillo, utiliza Machine Learning supervisado, no te empeñes en usar Big Data, utiliza Machine Learning en la nube y sobre todo, empieza ya.

Ámbitos de aplicación del Machine Learning

Muchas actividades actualmente ya se están aprovechando del Machine Learning. Sectores como el de las compras online – ¿no te has preguntado alguna vez cómo se decide instantáneamente los productos recomendados para cada cliente al final de un proceso de compra? –, el online advertising – dónde poner un anuncio para que tenga más visibilidad en función del usuario que visita la web – o los filtros anti-spam llevan tiempo sacando partido a estas tecnologías.

El campo de aplicación práctica depende de la imaginación y de los datos que estén disponibles en la empresa. Estos son algunos ejemplos más:

  • Detectar fraudeen transacciones.
  • Predecir fallos en equipos tecnológicos.
  • Prever qué empleados serán más rentables el año que viene (el sector de los Recursos Humanos está apostando seriamente por el Machine Learning).
  • Seleccionar clientes potenciales basándose en comportamientos en las redes sociales, interacciones en la web…
  • Predecir el tráfico urbano.
  • Saber cuál es el mejor momento para publicar tuits, actualizaciones de Facebook o enviar las newsletter.
  • Hacer prediagnósticos médicos basados en síntomas del paciente.
  • Cambiar el comportamiento de una app móvil para adaptarse a las costumbres y necesidades de cada usuario.
  • Detectar intrusiones en una red de comunicaciones de datos.
  • Decidir cuál es la mejor hora para llamar a un cliente.

 

La tecnología está ahí. Los datos también. ¿Por qué esperar a probar algo que puede suponer una puerta abierta a nuevas formas de tomar decisiones basadas en datos? Seguro que has oído que los datos son el petróleo del futuro. Ahora ya puedes empezar a bombearlo.

Fuente: cleverdata.io

Comments are closed.